Structure of HsdS Subunit from Thermoanaerobacter tengcongensis Sheds Lights on Mechanism of Dynamic Opening and Closing of Type I Methyltransferase
نویسندگان
چکیده
Type I DNA methyltransferases contain one specificity subunit (HsdS) and two modification subunits (HsdM). The electron microscopy model of M.EcoKI-M₂S₁ methyltransferase shows a reasonable closed state of this clamp-like enzyme, but the structure of the open state is still unclear. The 1.95 Å crystal structure of the specificity subunit from Thermoanaerobacter tengcongensis (TTE-HsdS) shows an unreported open form inter-domain orientation of this subunit. Based on the crystal structure of TTE-HsdS and the closed state model of M.EcoKI-M₂S₁, we constructed a potential open state model of type I methyltransferase. Mutational studies indicated that two α-helices (aa30-59 and aa466-495) of the TTE-HsdM subunit are important inter-subunit interaction sites in the TTE-M₂S₁ complex. DNA binding assays also highlighted the importance of the C-terminal region of TTE-HsdM for DNA binding by the TTE-M₂S₁ complex. On the basis of structural analysis, biochemical experiments and previous studies, we propose a dynamic opening and closing mechanism for type I methyltransferase.
منابع مشابه
Mechanism for the TtDnaA–Tt-oriC cooperative interaction at high temperature and duplex opening at an unusual AT-rich region in Thermoanaerobacter tengcongensis
Thermoanaerobacter tengcongensis is an anaerobic low-GC thermophilic bacterium. To further elucidate the replication initiation of chromosomal DNA at high temperature, the interaction between the replication initiator (TtDnaA) and the putative origin (Tt-oriC) in this thermophile was investigated. We found that efficient binding of TtDnaA to Tt-oriC at high temperature requires (i) at least two...
متن کاملDNA binding and subunit interactions in the type I methyltransferase M.EcoR124I.
The type I DNA methyltransferase M.EcoR124I consists of two methylation subunits (HsdM) and one DNA recognition subunit (HsdS). When expressed independently, HsdS is insoluble, but this subunit can be obtained in soluble form as a GST fusion protein. We show that the HsdS subunit, even as a fusion protein, is unable to form a discrete complex with its DNA recognition sequence. When HsdM is adde...
متن کاملCrystal structure of scaffolding protein CheW from thermoanaerobacter tengcongensis.
The crystal structure of the scaffolding protein CheW from Thermoanaerobacter tengcongensis (TtCheW) is reported with a resolution at 2.2A using molecular replacement. Based on the crystal structure TmCheA P4-P5-TmCheW from Thermotoga maritime reported by others, we modeled the TmCheA P4-P5-TtCheW complex and predicted that TtCheW is involved in a hydrophobic interaction with CheA, similar to t...
متن کاملStructural model for the multisubunit Type IC restriction–modification DNA methyltransferase M.EcoR124I in complex with DNA
Recent publication of crystal structures for the putative DNA-binding subunits (HsdS) of the functionally uncharacterized Type I restriction-modification (R-M) enzymes MjaXIP and MgeORF438 have provided a convenient structural template for analysis of the more extensively characterized members of this interesting family of multisubunit molecular motors. Here, we present a structural model of th...
متن کاملEstablishment of a genetic transformation system and its application in Thermoanaerobacter tengcongensis.
The whole-genome sequence of Thermoanaerobacter tengcongensis, an anaerobic thermophilic bacterium isolated from the Tengchong hot spring in China, was completed in 2002. However, in vivo studies on the genes of this strain have been hindered in the absence of genetic manipulation system. In order to establish such a system, the plasmid pBOL01 containing the replication origin of the T. tengcon...
متن کامل